Schizophrenia Prediction from rsFMRI Images using RESNET-50 based Classifier
Convolutional Neural Network, Deep learning, Neuro Imaging, Residual Network, Schizophrenia
Schizophrenia (SZ) is a mental disorder that affects many young people. Early detection and treatment can release the stress of family members and save societal costs. Deep learning in neuro imaging creates new insights in modification of brain structures during various brain disorders. Therefore, resting state functional Magnetic Resonance Image (rsFMRI) data for schizophrenia is used in this paper. At first, the images in the dataset are preprocessed. After that, data augmentation is done and data is splitted into training and testing images. Then, the model based on the deep learning framework RESNET 50 is constructed to extract features and the test images are given to the pre trained model to predict schizophrenia and Healthy Controls (HC). The classification accuracy of95.53% is achieved according to the experimental results. Based on the comparative analysis, we conclude that our model outperforms some recent methods and also increases the schizophrenia prediction accuracy.
Article Details
Unique Paper ID: 156813

Publication Volume & Issue: Volume 9, Issue 5

Page(s): 78 - 84
Article Preview & Download

Share This Article

Join our RMS

Conference Alert

NCSEM 2024

National Conference on Sustainable Engineering and Management - 2024

Last Date: 15th March 2024

Latest Publication

Call For Paper

Volume 10 Issue 10

Last Date for paper submitting for March Issue is 25 June 2024

About Us enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on

Social Media

Google Verified Reviews