COVID 19 CASE PREDICTION USING DEEP LEARNING
Author(s):
Rahul Dongarwar, Ameya Bankar, Deepak Sahu, Lina Ankatwar, Milind Shrivastava, Surbhi Khare
Keywords:
Abstract
The dynamical nature of COVID‐19 cases in different parts of the world requires robust mathematical approaches for prediction and forecasting. In this study, we aim to (a) forecast future COVID‐19 cases based on past infections, (b) predict current COVID‐19 cases using PM2.5, temperature, and humidity data, using four different machine learning classifiers (Decision Tree, K‐nearest neighbor, Support Vector Machine, and Random Forest). Based on RMSE values, k‐nearest neighbor and support vector machine algorithms were found to be the best for predicting future incidences of COVID‐19 based on past histories. From the RMSE values obtained, temperature was found to be the best predictor for number of COVID‐19 cases, followed by relative humidity. Decision tree models was found to perform poorly in the prediction of COVID‐19 cases considering particulate matter and atmospheric parameters as predictors. Our results suggests the possibility of predicting virus infection using machine learning. This will guide policy makers in proactive monitoring and control.
Article Details
Unique Paper ID: 158470

Publication Volume & Issue: Volume 9, Issue 9

Page(s): 661 - 663
Article Preview & Download


Share This Article

Conference Alert

NCSST-2023

AICTE Sponsored National Conference on Smart Systems and Technologies

Last Date: 25th November 2023

SWEC- Management

LATEST INNOVATION’S AND FUTURE TRENDS IN MANAGEMENT

Last Date: 7th November 2023

Go To Issue



Call For Paper

Volume 10 Issue 1

Last Date for paper submitting for March Issue is 25 June 2023

About Us

IJIRT.org enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on editor@ijirt.org

Social Media

Google Verified Reviews