The dynamical nature of COVID‐19 cases in different parts of the world requires robust mathematical approaches for prediction and forecasting. In this study, we aim to (a) forecast future COVID‐19 cases based on past infections, (b) predict current COVID‐19 cases using PM2.5, temperature, and humidity data, using four different machine learning classifiers (Decision Tree, K‐nearest neighbor, Support Vector Machine, and Random Forest). Based on RMSE values, k‐nearest neighbor and support vector machine algorithms were found to be the best for predicting future incidences of COVID‐19 based on past histories. From the RMSE values obtained, temperature was found to be the best predictor for number of COVID‐19 cases, followed by relative humidity. Decision tree models was found to perform poorly in the prediction of COVID‐19 cases considering particulate matter and atmospheric parameters as predictors. Our results suggests the possibility of predicting virus infection using machine learning. This will guide policy makers in proactive monitoring and control.
Article Details
Unique Paper ID: 158470
Publication Volume & Issue: Volume 9, Issue 9
Page(s): 661 - 663
Article Preview & Download
Share This Article
Conference Alert
NCSST-2021
AICTE Sponsored National Conference on Smart Systems and Technologies
Last Date: 25th November 2021
SWEC- Management
LATEST INNOVATION’S AND FUTURE TRENDS IN MANAGEMENT