Copyright © 2025 Authors retain the copyright of this article. This article is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
@article{158567, author = {ANAND UPADHYAY and SHIVPRAKASH VISHWAKARMA}, title = {IMAGE GENERATION USING GENERATIVE ADVERSARIAL NETWORKS}, journal = {International Journal of Innovative Research in Technology}, year = {}, volume = {9}, number = {10}, pages = {107-111}, issn = {2349-6002}, url = {https://ijirt.org/article?manuscript=158567}, abstract = {In recent years, generative adversarial network have shown promising results in generating high-quality images in various domains. This paper present Methods for generating images using generative adversarial network to generate high quality images. DCGAN (Deep Convolutional Generative Adversarial Network) is a type of Generative Adversarial Network (GAN) used for image generation. The DCGAN architecture consists of two main components : a generator and network and a discriminator network. During training, the generator and discriminator are optimized simultaneously using backpropagation and stochastic gradient descent. The training process continues until the generator produces images that are indistinguishable from real images, as determined by the discriminator. DCGANs have been successful in generating high-quality images in various domains, including faces, objects, and scenes, and have become a popular choice for image generation tasks in machine learning.}, keywords = {Deep Learning, Generator, Discriminator, Gradient Descent, Image processing, CNN.}, month = {}, }
Cite This Article
Submit your research paper and those of your network (friends, colleagues, or peers) through your IPN account, and receive 800 INR for each paper that gets published.
Join NowNational Conference on Sustainable Engineering and Management - 2024 Last Date: 15th March 2024
Submit inquiry