MOVIE POPULARITY AND TARGET AUDIENCE PREDICTION USING THE CONTENT-BASED RECOMMENDER SYSTEM
Author(s):
Madasu V Bhagya Sree, Suthari Vamshi, Eppalapally Saikiran, Najeema Afrin
Keywords:
Content-based, recommendation system, expert systems, deep learning, audience groups.
Abstract
The movie is an important part of our daily entertainment. For the worldwide movie industry, this is a highly thriving and substantial sector that attracts attention from people of all ages. In a recent study, it has been observed that only a small number of films are successful. The film production industry's stakeholders have been extremely stressed by uncertainty in the sector There is a growing belief among filmmakers and researchers that certain expert systems must be established to predict the movie's success probability in advance of its production with sufficient accuracy. In order to anticipate film popularity at the final production stage, a large amount of research has been carried out. We need to predict at the early stages of film production and provide specific information on upcoming movies, so that movie makers can estimate their future films and make necessary changes. The study suggests that a content Based Recommendation System for movies, CBRS using Preliminary Film features such as genre, cast, director, keyword and movie description, should be developed. We have created a new set of features and proposed the Random Forest deep learning (DL) model for building an multiclass movie popularity prediction system by using RS data, film ratings and voting information from similar movies. We've also made proposals for a system of predicting the popularity of an upcoming film according to different audience groups. The audience group was divided into four age groups: Junior, Senior, Middle and Elderly. The publicly available internet movie database IMDb and the film database HTTP(TMDb) data were used in this study. We have implemented a multiclass classification model that has yielded 96.8% accuracy which is superior to all the reference models. The potential of predictive and prescriptive data analysis within IT systems to underpin industry decisions has been highlighted in this study.
Article Details
Unique Paper ID: 159115

Publication Volume & Issue: Volume 9, Issue 11

Page(s): 336 - 341
Article Preview & Download


Share This Article

Conference Alert

NCSST-2023

AICTE Sponsored National Conference on Smart Systems and Technologies

Last Date: 25th November 2023

SWEC- Management

LATEST INNOVATION’S AND FUTURE TRENDS IN MANAGEMENT

Last Date: 7th November 2023

Go To Issue



Call For Paper

Volume 10 Issue 1

Last Date for paper submitting for March Issue is 25 June 2023

About Us

IJIRT.org enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on editor@ijirt.org

Social Media

Google Verified Reviews