Text to Image Generation
Author(s):
Gautam Gupta, Joshuva Jeemon, Supriya Mohite, Shubham Karande, Kirti Motwani
Keywords:
Generator, Discriminator, Generative adversarial networks, Conditioning augmentation.
Abstract
Machine Learning enables near-perfect algorithmic compositions. The proposed solution, Stacked Generative Adversarial Networks, generates photo-realistic images from text descriptions by decomposing the problem into manageable sub-problems through a sketch-refinement process. The Stage-I GAN sketches low-resolution images of the object's primitive shape and colors. The Stage-II GAN generates high-resolution images with photo-realistic details by rectifying defects in Stage-I results and adding compelling details with the refinement process. A Conditioning Augmentation technique improves diversity and stabilizes training. The proposed method achieves significant improvements in generating photo-realistic images conditioned on text descriptions.
Article Details
Unique Paper ID: 159511

Publication Volume & Issue: Volume 9, Issue 12

Page(s): 1065 - 1069
Article Preview & Download


Share This Article

Conference Alert

NCSST-2023

AICTE Sponsored National Conference on Smart Systems and Technologies

Last Date: 25th November 2023

SWEC- Management

LATEST INNOVATION’S AND FUTURE TRENDS IN MANAGEMENT

Last Date: 7th November 2023

Go To Issue



Call For Paper

Volume 10 Issue 1

Last Date for paper submitting for March Issue is 25 June 2023

About Us

IJIRT.org enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on editor@ijirt.org

Social Media

Google Verified Reviews