ENHANCING THE CREDIBILITY OF SOCIAL MEDIA USING BERT MODEL
Author(s):
Snehal More
Keywords:
Transfer Learning, Pre-trained BERT Model, Natural Language Processing
Abstract
By utilising transfer learning and the BERT (Bidirectional Encoder Representations from Transformers) model for the detection of Fake news, this research effort seeks to increase the trustworthiness of social media. Two CSV files, one with 21,416 real articles and the other with 23,480 fraudulent articles, make up the dataset. Each article has a title, a body of text, a date, and a subject. The subjects are divided into two categories: universal (47%) and political (53%). We want to increase the BERT model's ability to accurately detect bogus news on social media platforms. The findings and revelations from this research aid in the creation of practical strategies for thwarting false information, promoting a more reliable social media ecosystem
Article Details
Unique Paper ID: 160663

Publication Volume & Issue: Volume 10, Issue 1

Page(s): 968 - 972
Article Preview & Download


Share This Article

Conference Alert

NCSST-2023

AICTE Sponsored National Conference on Smart Systems and Technologies

Last Date: 25th November 2023

SWEC- Management

LATEST INNOVATION’S AND FUTURE TRENDS IN MANAGEMENT

Last Date: 7th November 2023

Go To Issue



Call For Paper

Volume 10 Issue 1

Last Date for paper submitting for March Issue is 25 June 2023

About Us

IJIRT.org enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on editor@ijirt.org

Social Media

Google Verified Reviews