Opacity to Transparency: A Journey into Explainable Recommender Systems
Drashti Shrimal, Dr. Harshali Patil
Explainable Recommender systems, User trust, User engagement.
Recommender systems have become an integral part of our daily lives, assisting users in discovering the relevant products, services, and information. However, the lack of transparency in the decision-making process of traditional recommender systems has raised concerns regarding user trust and understanding. To address this issue, explainable recommender systems have emerged as a promising research direction. This paper provides a comprehensive overview of explainable recommender systems, focusing on their significance & need, areas of usability, rationale, expected outcomes and challenges. Further it provides a comparative analysis of three approaches used in XAI. To provide a holistic perspective, we review existing literature and highlight key research trends and open challenges in the field of explainable recommender systems. Overall, this paper aims to serve as a comprehensive resource for researchers, practitioners, and decision-makers interested in understanding the state of the art in explainable recommender systems.
Article Details
Unique Paper ID: 160819

Publication Volume & Issue: Volume 10, Issue 1

Page(s): 1617 - 1626
Article Preview & Download

Share This Article

Join our RMS

Conference Alert

NCSEM 2024

National Conference on Sustainable Engineering and Management - 2024

Last Date: 15th March 2024

Call For Paper

Volume 11 Issue 1

Last Date for paper submitting for Latest Issue is 25 June 2024

About Us

IJIRT.org enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on editor@ijirt.org

Social Media

Google Verified Reviews