P. Hemalatha
Intrusion Detection System, KNN, GBC, CBC, Random forest Classifier.
A device or software programme known as an intrusion detection system (IDS) analyses network or system activity to look for signs of hostile activity. The construction of IDS in a neural network is suggested in this research. The IDS classification is separated using a larger dataset. The idea of transforming unclean data into clean data is known as data pre-processing. Before running the method, the dataset is pre-processed to look for missing values, noisy data, and other abnormalities. Chi-square-based feature extraction is used during the extraction process. The Chi-Square approach is used to process the extraction areas in order to extract various characteristics and choose the essential features in order to enhance classification. The efficient Chi-square method is employed in this project to determine feature extraction and feature selection. The chosen characteristics are then used to accurately classify data using the gradient boosting classifier (GBC), cat boosting classifier (CBC), K-Nearest neighbour (KNN), and random forest classifier. Python software is used in the execution of this project.
Article Details
Unique Paper ID: 161581

Publication Volume & Issue: Volume 10, Issue 5

Page(s): 151 - 156
Article Preview & Download

Share This Article

Join our RMS

Conference Alert

NCSEM 2024

National Conference on Sustainable Engineering and Management - 2024

Last Date: 15th March 2024

Call For Paper

Volume 11 Issue 1

Last Date for paper submitting for Latest Issue is 25 June 2024

About Us enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on

Social Media

Google Verified Reviews