Nikitha G S, Princy Sengar, Rahul Kumar, Ratnesh Kumar Puskar, Rishu Raj
processing, remote sensing, crop heath monitoring, precision agriculture, crop protection, machine learning, data mining, classification algorithm, disease management.
The escalating threat posed by plant diseases to global agriculture underscores the urgency for robust prediction systems to mitigate crop losses. This study presents a novel approach to plant disease prediction employing machine learning techniques. Leveraging a comprehensive dataset encompassing plant characteristics, environmental factors, and disease symptoms, a predictive model was developed and evaluated. The methodology involved data collection, preprocessing, feature extraction, and model training using state-of-the-art algorithms. The results demonstrated a significant predictive capability, with an accuracy of [insert accuracy percentage]. This research contributes to the advancement of precision agriculture by offering an effective tool for early disease detection and proactive management strategies. Moreover, it sheds light on the potential of leveraging machine learning in agricultural systems for sustainable food production.
Article Details
Unique Paper ID: 162943

Publication Volume & Issue: Volume 10, Issue 11

Page(s): 933 - 939
Article Preview & Download

Share This Article

Join our RMS

Conference Alert

NCSEM 2024

National Conference on Sustainable Engineering and Management - 2024

Last Date: 15th March 2024

Call For Paper

Volume 11 Issue 1

Last Date for paper submitting for Latest Issue is 25 June 2024

About Us enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on

Social Media

Google Verified Reviews