Towards Filtering of SMS Spam Messages Using Machine Learning Based Technique
Sufia anjum, Syed Sameer Ahmed, Syed Hannan, Tasmiya Ilyas
The popularity of mobile devices is increasing day by day as they provide a large variety of services by reducing the cost of services. Short Message Service (SMS) is considered one of the widely used communication service. However, this has led to an increase in mobile devices attacks like SMS Spam. In this paper, we present a novel approach that can detect and filter the spam messages using machine learning classification algorithms. We study the characteristics of spam messages in depth and then found ten features, which can efficiently filter SMS spam messages from ham messages. Our proposed approach achieved 96.5% true positive rate and 1.02% false positive rate for Random Forest classification algorithm.
Article Details
Unique Paper ID: 163861

Publication Volume & Issue: Volume 10, Issue 11

Page(s): 2844 - 2847
Article Preview & Download

Share This Article

Join our RMS

Conference Alert

NCSEM 2024

National Conference on Sustainable Engineering and Management - 2024

Last Date: 15th March 2024

Call For Paper

Volume 11 Issue 1

Last Date for paper submitting for Latest Issue is 25 June 2024

About Us enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on

Social Media

Google Verified Reviews