Copyright © 2025 Authors retain the copyright of this article. This article is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
@article{142437, author = {Arvind Jaiswal}, title = {Association Rules and their Optimization using Genetic Algorithm}, journal = {International Journal of Innovative Research in Technology}, year = {}, volume = {2}, number = {1}, pages = {316-322}, issn = {2349-6002}, url = {https://ijirt.org/article?manuscript=142437}, abstract = {Data mining is the analysis step of the "Knowledge Discovery in Databases", It is the process that results in the detection of new patterns in large data sets. The main aim of data mining is to pull out knowledge from an existing dataset and transform it into a flexible structure. In data mining association rule is a popular and easy method to find frequent itemsets from large datasets. In general frequent itemsets are generated from large data sets by applying association rule mining take too much computer time to compute all the frequent itemsets. By using Genetic Algorithm (GA) we can improve the results of association rule mining. Our main purpose is by Genetic Algorithm to generate high quality Association Rules, by which we can get four data qualities like accuracy, comprehensibility, interestingness and completeness. Genetic Algorithms are powerful and widely applicable stochastic search and optimization methods based on the concepts of natural selection and natural evaluation. The advantage of using genetic algorithm is to discover high level prediction rules is that they perform a global search and cope better with attribute interaction than the greedy rule induction algorithm often used in data mining. The main aim of this paper is to find all the frequent itemsets from given data sets using genetic algorithm. In this paper we are using the large dataset and our Experimental results on this dataset show the effectiveness of our approach. This paper provides the major improvement in the approaches for association rule mining using genetic algorithms.}, keywords = {Genetic Algorithm (GA), Association Rule, Frequent itemset, Support, Confidence, Data Mining.}, month = {}, }
Cite This Article
Submit your research paper and those of your network (friends, colleagues, or peers) through your IPN account, and receive 800 INR for each paper that gets published.
Join NowNational Conference on Sustainable Engineering and Management - 2024 Last Date: 15th March 2024
Submit inquiry