Design and Analysis of Brake master cylinder for an ATV
Author(s):
Shantanu Chavan, Vishal Tile, Mohit Chavhan, Shubham Agnihotri
Keywords:
Hydraulic system, brake, master cylinder, analysis, design, twin master cylinder
Abstract
Braking system is a means of converting momentum into heat energy by creating friction in the wheel brakes. The braking system which works with the help of hydraulic principles is known as hydraulic braking systems. The most frequently used system operates hydraulically, by pressure applied through a liquid. These are the foot operated brakes that the driver normally uses to slow or stop the car. Our special interest in hydraulics is related to the actions in automotive systems that result from pressure applied to a liquid. This is called hydraulic pressure. Since liquid is not compressible, it can transmit motion. A typical braking system includes two basic parts. These are the master cylinder with brake pedal and the wheel brake mechanism. The other parts are the connecting tubing, or brake lines, and the supporting arrangements. The present paper is about designing of Twin master cylinder system for and all-terrain vehicle and doing a feasibility study of its strength using ANSYS. Our work is focused on reducing weight which is one of the factors to increase the efficiency. Reduction in weight and space, due to its compactness. The twin Master cylinder system is a great advancement in braking system for an ATV. 3-D CAD modelling is done using SOLIDWORKS 2017, whereas the analysis of its strength is done using ANSYS.
Article Details
Unique Paper ID: 147001

Publication Volume & Issue: Volume 5, Issue 3

Page(s): 38 - 41
Article Preview & Download




Publish book

Go To Issue



Call For Paper

Volume 6 Issue 2

Last Date 25 July 2019


About Us

IJIRT.org enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on editor@ijirt.org

Social Media

Google Verified Reviews

Contact Details

Telephone:8200 61 5067
Email: editor@ijirt.org
Website: ijirt.org

Policies