Detection of tumors in MRI images using Genetic and Firefly C Mean and K Mean Clustering
Bandi Nissy, P. Mallikarjuna Rao
MRI Images, Genetic Firefly, C Mean Cluster, K Mean Cluster
Brain tumour extraction and its analysis are challenging tasks in medical image processing because brain image and its structure is complicated that can be analysed only by expert radiologists. Segmentation plays an important role in the processing of medical images. MRI (magnetic resonance imaging) has become a particularly useful medical diagnostic tool for diagnosis of brain and other medical images. This paper presents a comparative study of three segmentation methods implemented for tumour detection. The methods include k-means clustering with watershed segmentation algorithm, optimized k-means clustering with genetic algorithm and [1][3] optimized c- means clustering with genetic algorithm. Traditional k-means algorithm is sensitive to the initial cluster centres. [3] Genetic c-means and k-means clustering techniques are used to detect tumour in MRI of brain images. At the end of process, the tumour is extracted from the MR image and its [2] exact position and the shape are determined. The experimental results indicate that genetic c-means not only eliminate the over segmentation problem, but also provide fast and efficient clustering results.
Article Details
Unique Paper ID: 151381

Publication Volume & Issue: Volume 7, Issue 12

Page(s): 487 - 494
Article Preview & Download

Share This Article

Conference Alert


AICTE Sponsored National Conference on Smart Systems and Technologies

Last Date: 25th November 2021

SWEC- Management


Last Date: 7th November 2021

Go To Issue

Call For Paper

Volume 9 Issue 10

Last Date for paper submitting for March Issue is 25 March 2023

About Us enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on

Social Media

Google Verified Reviews

Contact Details