STUDY ON STRENGTH BEHAVIOUR OF HIGH-PERFORMANCE CONCRETE USING INDUSTRIAL WASTE AND PLASTIC FIBER
Author(s):
SAMA PRADEEP REDDY, Mr.V.VAMSI KRISHNA
Keywords:
Natural Language Processing, Deep Learning, Code-Mixed, Multilingual, Hinglish, Text Classification
Abstract
Detecting profanity, abuse or hate by building efficient Text Content Moderation systems has become an integral process and a practice for various digital and online media platforms. Chat platforms and community discussion forums are essential customer services that are being provided by many online media business platforms which allow the users which to express their opinions. Many users tend to misuse this service to spread profane and abusive content online.
The aim of this research is to design techniques and create independent models that are able to identify and detect instances of hate, abuse or profane content in English, Hindi and Hinglish. Further discrimination of the inappropriate instances into various classes, namely: (i) HATE (hate speech), (ii) OFFENSIVE (insulting, degrading) and (iii) PROFANE (swear words, cursing) has been performed. This work which aims to solve a prominent problem in the field of Natural Language Processing leverages the Machine Learning and Deep Learning Models to perform the Classification of text.
Article Details
Unique Paper ID: 153366
Publication Volume & Issue: Volume 8, Issue 6
Page(s): 602 - 606
Article Preview & Download
Share This Article
Conference Alert
NCSST-2021
AICTE Sponsored National Conference on Smart Systems and Technologies
Last Date: 25th November 2021
SWEC- Management
LATEST INNOVATION’S AND FUTURE TRENDS IN MANAGEMENT