Classification of Traffic Signs using Convolutional Neural Network
Harsh Shirke, Komal Satam, Shreyas Shete, Om Rane, Sowmyashree
Convolutional Neural Network, German Traffic Sign Recognition Benchmark, Traffic Signs.
Traffic signs are the important aspect of people's safety while driving. Though there are traffic signs at each corner of the road to indicate some instruction. We often find it difficult to understand what that traffic sign actually mean. There are in total 43 different traffic signs according to German Traffic Sign Recognition Benchmark. Our system approaches to solve this problem of classification and identification of these various traffic signs. Our system uses the German Traffic Sign Recognition Benchmark (GTSRB) dataset to identify and classify traffic signs using Convolutional Neural Network. As the pre-processing needed in CNN is less, We prefer using Convolutional Neural Network. The system captures the image of the traffic sign in real time and classify the image from the 43 classes to identify the traffic sign.
Article Details
Unique Paper ID: 158768

Publication Volume & Issue: Volume 9, Issue 10

Page(s): 703 - 705
Article Preview & Download

Share This Article

Join our RMS

Conference Alert


AICTE Sponsored National Conference on Smart Systems and Technologies

Last Date: 25th November 2023

SWEC- Management


Last Date: 7th November 2023

Call For Paper

Volume 10 Issue 10

Last Date for paper submitting for March Issue is 25 June 2024

About Us enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on

Social Media

Google Verified Reviews