Seismic Vulnerability of Columns of RC Framed Buildings with Soft Ground Floor

  • Unique Paper ID: 165724
  • Volume: 11
  • Issue: 1
  • PageNo: 1817-1825
  • Abstract:
  • Though multistoried buildings with open (soft) ground floor are inherently vulnerable to collapse due to earthquake load, their construction is still widespread in the developing nations. Social and functional need to provide car parking space at ground level far out-weighs the warning against such buildings from engineering community. In the present paper, an investigation has been performed to study the behavior of the columns at ground level of multistoried buildings with soft ground floor subjected to dynamic earthquake loading. The structural action of masonry infill panels of upper floors has been taken into account by modeling them as diagonal struts. Finite element models of six, nine and twelve storied buildings are subjected to earthquake load in accordance with equivalent static force method as well as response spectrum method. It has been found that when infill is incorporated in the FE model, modal analysis shows different mode shapes indicating that dynamic behavior of buildings changes when infill is incorporated in the model. Natural period of the buildings obtained from modal analysis are close to values obtained from code equations when infill is present in the model. This indicates that for better dynamic analysis of RC frame buildings with masonry walls, infill should be present in the model as well. Equivalent static force method produces same magnitude of earthquake force regardless of the infill present in the model. However, when the same buildings are subjected to response spectrum method, significant increase in column shear and moment as well as total base shear has been observed in presence of infill. In general, a two fold increase in base shear has been observed when infill is present on upper floors with ground floor open when compared to the base shear given by equivalent static force method. The study suggests that the design of the columns of the open ground floor would be safer if these are design for shear and moment twice the magnitude obtained from conventional equivalent static force method. Study of the sway characteristics also reveals significantly high demand for ductility for columns at ground floor level. Presence of infilled wall on upper floors demands significant enhancement of column capacity or ductility to cope up with increased sway or drift.

Cite This Article

  • ISSN: 2349-6002
  • Volume: 11
  • Issue: 1
  • PageNo: 1817-1825

Seismic Vulnerability of Columns of RC Framed Buildings with Soft Ground Floor

Related Articles