Android Malware Detection Using Genetic Algorithm based Optimized Feature Selection and Deep Learning
Smitha S, Sneha N, Kavya B M, Manasa G R, Heena Kousar
Android malware detection, genetic algorithm, feature selection, deep learning
Malware has become a serious threat to Android devices due to the increasing popularity of these devices. In this paper, we propose a novel method for Android malware detection using genetic algorithm based optimized feature selection and deep learning. Our approach aims to select the most relevant features for detecting Android malware using genetic algorithm based optimization. The selected features are then used to train a deep learning model using CNN and LSTM algorithm for accurate malware detection. We evaluate the performance of our proposed method using a dataset of Android malware and benign apps. The results show that our approach achieves high accuracy in detecting Android malware, outperforming existing methods.
Article Details
Unique Paper ID: 159655

Publication Volume & Issue: Volume 9, Issue 12

Page(s): 348 - 354
Article Preview & Download

Share This Article

Join our RMS

Conference Alert

NCSEM 2024

National Conference on Sustainable Engineering and Management - 2024

Last Date: 15th March 2024

Call For Paper

Volume 11 Issue 1

Last Date for paper submitting for Latest Issue is 25 June 2024

About Us enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on

Social Media

Google Verified Reviews