Copyright © 2025 Authors retain the copyright of this article. This article is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
@article{144644, author = {K. Swathi}, title = {A Review of Learning from Heterogeneous Behavior for Social Identity Linkage}, journal = {International Journal of Innovative Research in Technology}, year = {}, volume = {3}, number = {3}, pages = {231-235}, issn = {2349-6002}, url = {https://ijirt.org/article?manuscript=144644}, abstract = {Social identity linkage from corner to corner diverse social media platforms is of critical prominence to business intelligence by acquisition from social data a deeper understanding and more accurate profiling of users.In this paper we suggests HYDRA framework with k-mean clustering whichincludes the social media networks which measures two users mention to one person when one of their attributes is same.The action of the user accounts are formed as a cluster by using k-mean clustering and thus the cluster has a data about theuser where it mean to be efficient when proliferation of user increasing. Statistical models of topic distribution constructingstructural consistency graph to evaluate the high-order structure consistency. Lastly, discovering the mapping function bymulti-objective optimization compiled both the supervised learning and the cross platform structure consistencymaximization. Henceforth, this model is able to find the hidden relationships of group of users with high delivery data speed. }, keywords = {Social Identity Linkage, Structured Learning,multi-objective optimization, social identity linkage, structureconsistency, user behavior trajectory.}, month = {}, }
Cite This Article
Submit your research paper and those of your network (friends, colleagues, or peers) through your IPN account, and receive 800 INR for each paper that gets published.
Join NowNational Conference on Sustainable Engineering and Management - 2024 Last Date: 15th March 2024
Submit inquiry