Copyright © 2025 Authors retain the copyright of this article. This article is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
@article{154244, author = {Arun Raj S and Anand. S. B. and Fathima B. and Ponnu Raj R.}, title = {Covid-19 Detection from Chest X-Ray using ACGAN and RESNET}, journal = {International Journal of Innovative Research in Technology}, year = {}, volume = {8}, number = {7}, pages = {121-126}, issn = {2349-6002}, url = {https://ijirt.org/article?manuscript=154244}, abstract = {COVID-19 is a viral infection brought about by Coronavirus 2 (SARS-CoV-2). The spread of COVID-19 appears to have a hindering impact on the worldwide Economy and wellbeing. A positive chest X-beam of contaminated patients is a urgent advance in the fight against COVID-19. This has prompted the presentation of an assortment of profound learning frameworks and studies have shown that the exactness of COVID-19 patient recognition using chest X-beams is unequivocally idealistic. Profound learning organizations like convolutional neural organizations (CNNs) need a significant measure of preparing information. In this task, we present a technique to create engineered chest X-beam (CXR) pictures by fostering an Auxiliary Classifier Generative Adversarial Network (ACGAN) based Model called Covid GAN. Also, the proposed framework shows that the engineered pictures created from Covid GAN can be used to improve the exhibition of CNN based design called Resnet.}, keywords = {}, month = {}, }
Cite This Article
Submit your research paper and those of your network (friends, colleagues, or peers) through your IPN account, and receive 800 INR for each paper that gets published.
Join NowNational Conference on Sustainable Engineering and Management - 2024 Last Date: 15th March 2024
Submit inquiry